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Graph Theory 
An Introduction to graph theory. 
Graph theory in simple terms is the study of graphs which consist of points or
vertices and their connections or edges. A path is defined as a series of vertices
connected by edges. 

Graphs in math's are used for multiple logical and combinatoric 
problems. Helping solve complex problems with a simple 
visualisation and usually an exhaustive counting of the paths 
that meet a requirement or spotting the repeating subgraphs, 
graphs within a graph, and understanding the reason behind it. 

Origins 
Graph theory was developed in the early 18th century when the famous
mathematical problem of the seven bridges of Königsberg was presented. This
involved the Prussian town of Königsberg, now Kaliningrad, Russia, which had
seven bridges connecting 4 pieces of land across the River Pregel. The problem
questioned whether giving a tour of the town while crossing each bridge exactly
once was possible. With trial-and-error people found this problem to be very
challenging, however in 1735, Leonhard Euler mathematically proved that this was
impossible as each vertex had an odd number of connections. 

Benjamin E



Maths in Minutes by Paul Glendinning 

At first graphs were used to show connections between cites or relationships
between people, having quickly developed directed and weighted edges.
Graphs then later in the 20th century, were used to show the current in an
electric circuit allowing people to understand and develop electrical devices
quicker and with less confusion. And recently AI neural networks and
mapping programs have used graphs as a concept in their coding. People
have also depicted the internet as a graph with communities and celebrities
as central connections. This has also led to the idea of weighted nodes
possibly being added to this expansive discipline. 

Sources 

Real life applications 

Benjamin E



The Birthday paradox
Sharing a birthday with someone. Few people actually know someone that they share a
birthday with, personally, that is (searching it up online doesn't count!). But, what if I
told you that the odds of someone sharing a birthday with somebody else are actually
more likely than you think?

Let's say that we have a room of 23 people. What would you say the odds would be for
two people to have the same birthday? 1/365 perhaps? Or maybe a bit less? What about
just above half? 

That's right, the answer is, in fact, just above half. Sounds weird, huh? But, due to
probability, some events can be more likely to occur than we initially believe it to. The
thing with this question is that it's asking for the odds of two random people sharing
a birthday, not the probability that a specific person will share a birthday with another
in the group. With this piece of information noted, it is much easier to find two people
with the same birthday. 

Many believe that the chances are 183, which is 365 days in a year divided by 2. This is
because they are assuming the probability of a match increases linearly, when it
actually increases exponentially (more and more) with every new person instead. 

This problem is known as a veridical paradox, which usually results in an answer that is
incomprehensible and absurd, but is true anyway. This means we can be fooled by our
own intuition. The idea of 2 people out of 23 people having around a 50% chance of
being able to share a birthday sounds like an incredibly small amount of people needed,
hence making this a veridical paradox. 

But, if you think about it, if we compare each individual’s birthday to another
individual’s birthday, we make in total (23 x 22)/2 = 253 comparisons, which is far more
than half the number of days in a year, making the 23 people needed seem far more
reasonable than it initially seemed like.

And that’s all there is to the Birthday Paradox, I hope not as confusing as it initially
seemed after being broken down!

Tingting H



Mersenne Primes
 

How many Mersenne
Primes are there?

The search for Mersenne
P r imes

The first few Mersenne prime
numbers are 3, 7, 31, 127, 8191...
And the exponents (n) that 
give these Mersenne primes 
are 2, 3, 5, 7, 13... 

It is conjectured (but not proven) 
that there are an infinite number of
Mersenne primes, however, only 51

are known as of now.
Fun fact – the largest known prime
number is also a Mersenne prime!
It 
is282,589,933− 1. This number is 

24,862,048 digits long! In fact, all 6
of the largest prime numbers are

Mersenne primes as well!

Mersenne primes have a close

(positive integers that are equal to the 

Contributions to searching for 
Mersenne Prime numbers have started

since 1461. Thanks to modern
technology, the process of finding

Mersenne Primes is a lot easier. The 
last Mersenne prime was found in
December 2018, by a computer!

connection to perfect numbers

sum of its positive divisors**.)

Yasmin P

* The power also must be a prime number.

** For example, 6 is a perfect number, as its 
factors are 1, 2 and 3, and the sum of
those numbers is also 6.

The first 64 prime exponents with those
corresponding to Mersenne primes
shaded in cyan and in bold, and those 
thought to do so by Mersenne in red and 
bold.

What is a Mersenne 

Mersenne's Marvelous 
Properties!

A Mersenne Prime is a prime
number which satisfies the

formula (2^n )-1. In other words,
it is a prime number that is one

less than a power* of 2.
Mersenne primes are named

after a French polymath, Marin
Mersenne who studied them in

the early 1600s.

However, before calculators were used
the search of Mersenne Primes was

extremely difficult. Many
mathematicians at this time tried to

discover new Mersenne Primes.
Unfortunately for these mathematicians
during this period there was a large gap

between the exponents yielding
Mersenne Primes. After 127 the next

exponent was 521 - more than 4 times
larger than the previous record!



Numeral Systems

Maya numerals before the 15th century.

10inprimary school when you used 

isthe way we assign place value to real

system*.In Base-10, each digit of a

ranging from 0 to 9 (10 possibilities). The

powers of 10. Each number position is

hence the term Base-10.

Many factors play into which numeral
system is most convenient. Base-60 is
very useful because it has manyfactors. 
However, Base-8 (octal)and Base-16 
(hexadecimal) are a lot more useful 

when dealing with computers, as they 
are powers of two. Overall, the

convenience of a numeral system
depends on what it is being used for.

Several civilisations developed theBase-

Babylonians, the Chinese and the Aztecs.

mathematicianshad perfected a Base-

real number using only 10 unique 

Yasmin P

Base-10 – The numeral
system we use

What is the most 

Where did Base-10 originate 

You've probably learnt about Base-

Base-10 blocks. As a recap, Base-10

numbers. It's also known as the decimal

number can have an integer value 

positions of the numbers are based on 

10 times the value to the right of it, 

10 system independently, including the

By the 7th century,Indian 

10system, which could represent any

sy m bol s.

The reason why we, and many other
cultures use Base-10 is quite simple – 10
is the best for counting, as we have 10
fingers.Counting using fingers has been

a method of simplifying counting for
thousands of years. In fact, did you know 

that the word "digit" is a synonym for 
"finger"? It comes from the Latin word 

digit us.

Other Numeral Systems

from?

convenient numeral
syst em?

Why do we use Base-10?

in Computer Science, is another numeral

the numbers 0 and 1.

The Babyloniannumeral systemused both

Base 60 to measure quite a few things

measurement of time – 60 seconds, 60

measuring angles (like how we divide a 

Base-10 andBase-60. In fact, we still use

today! Examples include the 

minutes, etc. We also use Base-60 when

circle into 360°).

Other base systems used throughout 
history include: vigesimal (base-20)which 
is anumeral systemused by the Mayans 
and the duo-decimal (base-12) numeral 

system used by Ancient Egyptians.

Binary, which you may have learnt about

system. It is Base-2, as it only consists of 

* This is because a digit's value in a number 
isdetermined by where it lies in relationto the
decimal point (tens, hundreds,thousands, etc.)



The Golden Ratio

Sources

What is the Golden Ratio?

What makes this ratio 

Formulas of the Golden Ratio

In the 13th century, an Italian
mathematician introduced a sequence of
numbers called the Fibonacci sequence.
The rule this sequence follows is that the

previous two numbers must be added
together to find the next term. The first few 

terms are 1, 1, 2, 3, 5, 8, 13, 21...

In this sequence, the ratio between a term 
and its previous term gets closer and 

closer to the golden ratio, as you progress 
further. This ratio is 

approximately1.618034, or (1+√5)/2.
It is denoted as the Greek letterϕ, 

pronounced phi.

Yasmin P

There are many different reasons as to why

nice – one way it's special is its 

botanical name for leaf arrangement, is

sequence and the Golden Ratio. For

sunflower's head, there are two systems of

you count carefully, there are 55 clockwise

Do these numbers seem familiar? They are

sequence, and the ratio between these 

As previously mentioned,(1+√5)/2 is a
formula for finding the Golden Ratio. Others 
includeϕ =1+1/(1+ 1/(1+ 1/(1+⋯ , ϕ 
= 1 + (1/ϕ) , or even

this specific ratio is quite important, and

appearances in nature. Phyllotaxis, the

very closely linked to the Fibonacci

example – in the florets of a large 

spirals*radiating from the center. When 

spirals and 34 counterclockwise spirals. 

consecutive terms in the Fibonacci 

numbers is the golden ratio.

special?

* You can find thesespirals in other plants as
well, such ascauliflowers, certain types of
cacti,and evenpinecones!

or
ϕ =2 × sin (54°). The 

different areas ofmaths, as well as 
golden ratio has many appearances in

na ture!

P. 112-116 "The Book of Numbers", John H.C, 
Richard K.G
britannica.com - Golden

ratio Formula & Uses
statisticsbyjim.com - Fibonacci Sequence: 



 

From the above figure, if we see diagonally, the first diagonal line is the list of ones, the second line 
is the list of counting numbers, the third diagonal is the list of triangular numbers and so on. 
Pascal's triangle formula is (n+1)C(r) = (n)C(r - 1) + (n)C(r). It means that the number of ways to 
choose r items out of a total of n + 1 items is the same as adding the number of ways to choose r - 1 
items out of a total of n items and the number of ways to choose r items out of a total of n items. 

 
In 1653 he wrote the Treatise on the Arithmetical Triangle which today is known as Pascal’s Triangle. 
Although other mathematicians in Persia and China had independently discovered the triangle in 
the eleventh century, most of the properties and applications of the triangle were discovered by 
Pascal. 

This triangle was among many of Pascal’s contributions to mathematics. He also came up with 
significant theorems in geometry, discovered the foundations of probability and calculus and also 
invented the Pascaline-calculator. Still, he is best known for his contributions to the Pascal triangle.

The easiest way to construct the triangle is to start at row zero and write only the number one. From 
there, to obtain the numbers in the following rows, add the number directly above and to the left of 
the number with the number above and to the right of it. If there are no numbers on the left or right 
side, replace a zero for that missing number and proceed with the addition. Here is an illustration of 
rows zero to six. 

Yasin ABlaise Pascal

Pascal’s Triangle

Blaise Pascal was born on June 19, 1623 in Clermont-Ferrand, France and died August 19, 1662
of stomach cancer. Pascal was a man of immense knowledge in addition to being a superb
mathematician. Throughout his life, he developed into a scientist, inventor, philosopher and
mathematician. Pascal made numerous Contributions to the Creation of the world at large
including the hydraulic press, the barometer and the syringe he was revered as a God in the field
of Mathematics and is better remembered for developing Pascal's Triangle and the adding
machine which was originally known as the Pascaline and is today commonly recognised as a
calculator.

Blaise Pascal

https://byjus.com/maths/counting-numbers/


The number of minimal Sudokus (Sudokus in which no clue can be deleted without losing the
uniqueness of the solution) is not precisely known. However, statistical techniques combined with a
generator, show that there are approximately (with 0.065% relative error):

-
- 

3.10×1037 distinct minimal puzzles
2.55×1025 minimal puzzles that are not pseudo-equivalent(same arrangement where all
instances of one digit are switched with another digit).

The fewest clues in a Sudoku with two-way diagonal symmetry (a 180° rotational symmetry) is
believed to be 18, and in at least one case such a Sudoku also exhibits automorphism (an
automorphism is a morphism of the object to itself that has an inverse morphism). A Sudoku with 24
clues, (a 90° rotational symmetry, which also includes a symmetry on both orthogonal axis, 180°
rotational symmetry, and diagonal symmetry) is known to exist, but it is not known if this number of
clues is minimal for this class of Sudoku

For classical Sudoku, the number of filled grids is 6,670,903,752,021,072,936,960, which reduces to
5,472,730,538 essentially different solutions under the validity preserving transformations. There are
26 possible types of symmetry, but they can only be found in about 0.005% of all filled grids. An
ordinary puzzle with a unique solution must have at least 17 clues. There is a solvable puzzle with at
most 21 clues for every solved grid. The largest minimal puzzle found so far has 40 clues in the 81
cells.

Many Sudokus have been found with 17 clues, although finding them is not a trivial task. A 2014
paper by Gary McGuire, Bastian Tugemann, and Gilles Civario proved that the minimum number of
clues in any proper Sudoku is 17 through an exhaustive computational proof based on hitting set
enumeration.

The problem of designing a system of clues that has a given grid of numbers as its unique solution can
be formulated as a minimal hitting set problem. The 81 candidate clues from the given grid are the
elements to be selected in the hitting set, and the sets to be hit are the sets of candidate clues that
can eliminate each alternative solution. Therefore, the enumeration of minimal hitting sets can be
used to find all systems of clues that have a given solution.

SUDOKU Estelle R



For the enumeration of all possible solutions, two solutions are
considered distinct if any of their corresponding cell values
differ. Symmetry relations between similar solutions are ignored
(the rotations of a solution are considered distinct). Symmetries
play a significant role in the enumeration strategy, but not in the
count of all possible solutions.

A Sudoku solution grid is also a Latin square. There are
significantly fewer Sudoku grids than Latin squares
because Sudoku imposes additional regional constraints.

As in the case of Latin squares the (addition- or)
multiplication tables of finite groups can be used to
construct Sudokus and related tables of numbers. Namely,
one has to take subgroups and quotient groups into
account.

In a 2005 study, the permutations of the top band
used in valid solutions were analysed. Once the
Band1 symmetries and equivalence classes for the
partial grid solutions were identified, the completions
of the lower two bands were constructed and
counted for each equivalence class. Summing
completions over the equivalence classes, weighted
by class size, gives the total number of solutions as
6,670,903,752,021,072,936,960, confirming the value
obtained.



WHO WAS HE: 

THE FIBONACCI SEQUENCE: 

However, Fibonacci was most known for his development of the FIBONACCI SEQUENCE…

Every number in the Fibonacci sequence is equal to the sum of the two numbers that came before it. Although
some versions begin with 1 and 1, the sequence usually begins with 0 and 1. The order is as follows:

It was through these travels where Fibonacci discovered the Hindu-Arabic numericals; these included the use
of the digits 0-9 which is the main numerical system used in the world today. It was Fibonacci who brought this
concept over to Europe, as he recognised the superiority of this system compared to the current previous
numerical system, this led to the eradication of the use of Roman numericals. This new system allowed for a 
much more practical use of mathematical techniques: such as algebra, and the conversion of weights and 
measures. 

Fibonacci, his full name being Leonardo Bonacci, was an Italian mathematician born in around 1170 – (1240-50),
who was later regarded as “the most talented Western mathematician of the Middle Ages”. He was also known
as “Leonardo the traveller of Pisa” through the plethora of different concepts he encountered through his
travels. 

with initial conditions:

USES OF THIS SEQUENCE: 

This sequence is ultimately an infinite sequence and so is mathematically defined by the formula:

Numerous natural occurrences exhibit the Fibonacci sequence. For example, if you were to look at the spiral of
seeds in the centre of a sunflower and count them, your total will be a Fibonacci number. This also works for the
number of petals of some flowers eg: daisies have 13 petals, lily’s have 5. Because of its qualities and
connections to the golden ratio, it is also utilised in computer algorithms, financial markets (in technical 
analysis), and numerous other fields of science and art. For instance, Fibonacci retracements are popular 
amongst traders to predict potential future prices in financial markets. This is because they can help to identify 
potential support and resistance levels where the price of assets may find a price floor/ ceiling after a 
significant move up or down. 

F(n

 

F(0)=0  

F(1)=1
)=F(n−1)+F(n−2)

Anoushka K



Exploring Modular Arithmetic 

Modular arithmetic involves performing arithmetic operations on remainders, where numbers 
reset to zero after reaching a specified value called the modulus. This cyclic nature makes 
modular arithmetic essential in fields like cryptography, computer science, and number 
theory. 

Introduction to Modular Arithmetic 

Modular arithmetic centres on remainders and cycles. Numbers "wrap around" after reaching 
a modulus, such as in a system where numbers reset after 5. The modulo operator (%) 
calculates remainders and congruence relation (≡) shows that two numbers have the same 
remainder for a given modulus. For example, 15 ≡ 3 (mod 12) means 15 and 3 share the same 
remainder when divided by 12. This concept is seen in a 12-hour clock: if it’s 7:00 and we 
add 8 hours, we get 15:00, but on the clock, the time is 3:00, illustrating the cyclic nature of 
modular arithmetic. 

Properties of Modular Arithmetic 

Modular arithmetic shares properties with standard arithmetic. It is closed under addition and 
multiplication, meaning the sum and product of two integers modulo 𝑚 result in another 
integer modulo 𝑚. It also maintains commutativity and associativity and is distributive, 
allowing multiplication to distribute over addition. These properties allow us to manipulate 
modular equations and solve congruences. 

Applications in Cryptography 

Cryptography heavily relies on modular arithmetic. The RSA algorithm, for example, uses 
modular exponentiation to generate public and private keys for encryption and decryption. 
Large prime numbers are chosen to compute the modulus and derive keys. Messages are 
encrypted with the public key and decrypted with the private key. The security of RSA 
encryption depends on the difficulty of factoring large composite numbers and computing 
modular inverses, ensuring the confidentiality and integrity of data. 
Applications in Computer Science 

Beyond cryptography, modular arithmetic is crucial in generating pseudo-random numbers, 
which simulate randomness for simulations, statistical sampling, and gaming. These numbers 
are vital in weather forecasting, unbiased statistical analysis, and creating unpredictable 
gaming experiences. Pseudo-random numbers, though deterministically generated, effectively 
mimic true randomness, making them invaluable in various computer science applications. 

Modular arithmetic combines theoretical depth with practical versatility, profoundly 
impacting mathematics and real-world problems. Its applications span from ancient 
civilizations to modern cryptography and computer science, highlighting its enduring 
relevance. Further exploration into this fascinating subject reveals its potential to solve 
complex challenges in the digital age. 

Micah E



ROE, assesses how effectively a company utilises
shareholders' funds to generate profits. It's

calculated from financial statements, with a higher
percentage suggesting better returns. Comparing

to industry averages is crucial, as high ROE can be
influenced by debt levels. Therefore, careful
analysis is needed for investment decisions.

Investing involves the practical application of various mathematical concepts.
Although investing appears to be primarily influenced by market trends and
economic indicators, it fundamentally relies on numerical analysis.
Understanding the types of math that are most beneficial for investing can
improve your decision-making process. This essay explores important
mathematical concepts, including simple arithmetic, percentages,
compounding, statistics, probability, and calculus, and how they apply to stock
market investments.

At the most fundamental level, investing relies on simple arithmetic to calculate
investment returns, profit margins, and dividend yields. Basic arithmetic is essential for
all investment calculations, from earnings per share to the price-to-earnings ratio,
enabling informed investment decisions. Several fundamental equations are also
essential for investors to understand. These equations provide insights into the
performance and potential of investments.
 For example:

Simple Arithmetic and Algebra in Stock Market Investments

Where:
𝐹 = Future value of the investment
𝑃 = Present value of the investment
𝑡 = Number of compounding periods
𝑅 = Periodic interest rate or rate of return

This formula helps investors estimate the future value of their investments, allowing
them to plan how much they need to invest each year to achieve their financial goals.

CAPM assesses the price of a stock in
relation to general market movements,
helping investors understand a stock's

behaviour in different market
conditions.

The Role of Maths in Stock Market InvestmentsThe Role of Maths in Stock Market Investments

Return on Equity (ROE)Return on Equity (ROE)

Future Value of Investment Future Value of Investment 

Capital Asset Pricing Model (CAPM)Capital Asset Pricing Model (CAPM)

Vidhi M



They are a crucial concept in investing, used to represent various forms of
measurement like investment returns, stock price changes, and company growth
rates. Understanding how to calculate and interpret percentages enables
comparison of investments and identification of trends. For instance, a 10%
stock price increase might seem positive, but if the market rose by 20%, the
stock underperformed.

Compounding is one of the most powerful concepts in investing. It’s
the idea that you can earn returns not just on your original investment
but also on the returns you’ve already earned.

A is the amount of money accumulated after n
years, including interest.
P is the principal amount (the initial amount of
money).
r is the annual interest rate.
n is the number of times that interest
compounds per year.
t is the length of time the money is invested (in
years).

This principle highlights the benefits of long-term investing and reinvesting returns,
demonstrating how small investments can grow significantly over time. Therefore,
starting to invest early is beneficial.

Key statistical concepts in investing include mean, median, mode, range, standard
deviation, and correlation. 

For instance, the mean return of a stock over a specific period provides an idea of its
average performance, while the standard deviation indicates how much the stock's returns
deviate from the mean, reflecting its risk level. Correlation shows how closely the
performances of two stocks are linked. 

Statistics help identify market trends and patterns; for example, regression analysis can be
used to assess how factors like earnings, interest rates, or economic indicators influence a
stock's price.

As an investor, you can use probability to evaluate investment risks and predict future
performance. For instance, estimating the probability of a startup's success can be based on data
from similar startups. It also helps assess the likelihood of market scenarios, such as estimating
the chance of a recession, allowing you to adjust your investment strategy accordingly

Statistics: Understanding Data

Probability

Compounding

Percentages - Vidhi M



Calculus: Understanding Change Over Time

Calculus, precisely differential calculus, can be helpful in investing because it
deals with rates of change. Surroundings are constantly changing in finance, and
understanding these changes can be key to making good investment decisions.
You can utilize calculus to determine the growth rate of a company’s earnings or
to estimate the rate at which interest rates are likely to change. More advanced
investment strategies, like options pricing, also use calculus.

In conclusion, mastering these mathematical concepts helps investors make
smart choices and these skills are incredibly helpful for successful investing.

By- Vidhi Malik 12P



Game Theory
Game theory is often defined as the science of strategy.  It analyses the behaviour of 2 or more
participants in situations involving gains or losses. Not only do games such as chess and poker use it,
but seemingly competing companies and businesses do too.

There are many underlying strategies and theories that compile to create the umbrella term, “Game
Theory” and I will be talking about the application of game theory in football using a “mixed strategy”.
In penalties both the striker and goalkeeper have 3 choices: left, right and centre. If we look at past
figures, out of 100 000 goals, 75.5% of them were successful, 17.6% were saved by goalkeepers and
the rest were either wide or hit the post. Majority of shots taken were either left or right rather than the
centre. 
We must note that strikers will rarely always go the same way for every penalty they take as
randomness is needed so the goalkeeper doesn’t always guess your direction correctly and saves it
this. So we will used a mixed strategy. Below is a graph which shows the probabilties of a striker
scoring given the goalkeeper goes that way and the striker goes their respective way.

The expected average score will help in finding out which is the best combination to use. One case
can be if both players decide a direction randomly, so probability 1/3. Calculating the expected value
would be (1/9 x 0.5) + (1/9 x 0.8) +...+ (1/9x0.5) = 0.7. Now if the striker instead chooses to go left
half their shots and right for the other half the expected score changes as 1/3 becomes 1/2. This
equals 0.73. We can see 0.73>0.7 so the striker should use this strategy. However, the goalkeeper
will pick up this pattern which in the long term may result in less goals scored.  Taking into account
various combinations and using a technique called linear programming we can find the best
combination for the striker and then for the keeper. For the striker the values are 42% right, 42% left
and 16% central. The expected value for this is 0.72 which we can see is roughly similar to 0.75 as
past data demonstrates. 

Game theory provides insight into behaviour. So it is important to remember that it doesn't tell
us directly what the aim should be but rather how someone can best achieve their aim. 

Dylan L



I recently went on a maths residential to Cambridge, where I was surrounded by girls my

age, from all around the UK from Ireland to Dover, interested in pursuing maths as a

degree at competitive universities. As we arrived at Cambridge, the first thing that struck

me was the number of bikes on the road. Cambridge is substantially more bike-friendly

than London, and it was nice to see less congestion due to cars, vans and trucks on the

roads. 

After putting our bags away and getting used to our 

accommodation (We rooms all to ourselves with

 ensuite bathrooms!), we then gathered into a 

lecture room, and got to know the people around

 us, and the undergraduate students who would 

be helping us through our residential, and answering

 our questions. There were a range of 

undergraduates from many different subjects

 all related to maths, like physics, engineering

 and economics.

Maths@Cambridge Residential

We then had dinner in the dining hall of Christ’s college. It was very fancy, and they gave a

whole Hogwarts experience, giving us an opportunity to wear formal gowns too. We learnt

many interesting facts about Christ’s, like how it was founded by a woman, Lady Margaret

Beaufort, but she was not allowed to enter Christ’s, so she made a secret tunnel so that

she could see how the construction work was going. We were also able to speak to many

undergraduates and academics, to ask them about their opinions on Cambridge, and the

overall experience they have had of the city. It was very enlightening, and it gave me a lot

more insight into what to consider when I do apply to universities.

On Friday, we had breakfast in the Upper Hall in Christ’s college. We then had an hour and

45 minutes of free time, which I spent with a group of people walking around Cambridge

and exploring all the nearby colleges. As we were prospective student, we were allowed to

enter all the colleges free of charge, including King’s college, which was quite exciting. We

then went to Trinity College, and had a tour of the grounds. In the library, they showed us

how they had many first editions of rare books, like the first manuscripts for Winnie the

Pooh, and the original versions of Shakespeare’s plays. We managed to see some of the

work of an extremely important Indian mathematician, Srinivasa Ramanujan. It was all very

complicated, and difficult to understand, but it was nice to see some diversity in the

history of maths. 

Rose E



We had lunch in the Trinity Great hall, and then we
had a lecture about admissions into Cambridge, which
was very insightful, and gave us lots of tips on how to
have the strongest application, but overall, the main
thing was that you had to be passionate about maths,
and have talent in it. We then had a lecture about a
maths adjacent subject. The options we had were land
economy, economics, bioengineering and physics. I
chose physics, and the lecture was mainly about
fluorescence. It was quite difficult to follow,
especially with the many long equations, and
university-level physics, but sometimes the lecturer
would start talking about something I was learning in
Physics at the moment, like the Photoelectric effect,
wave-particle duality, and Young’s double-slit
experiment, and I found it so satisfying to see how
easily the things we learn at A-Level can be linked to
complicated things at university.

There was also Wittgenstein’s notebooks. Wittgenstein was one of the most
influential figures in 20th century Philosophy. They also had one of the
very first edition of Philosophiae Naturalis Principia Mathematica, one of
the first books published by Isaac Newton, with some of his very own
annotations! Some other things of Newton’s that were on display included
a lock of his hair, his prism, his writing instruments, and his undergraduate
notebook.

We had a student life Q&A with some undergraduate and PhD students at
Cambridge, and we were able to see more about what it meant being a student at
Cambridge. They spoke a lot to us about the collegiate system, how the university
was separated into colleges, and the colleges were the ones who interviewed and
selected the people who got offers. We also got to know about how effective and
easy to use the wellbeing system at Cambridge is, and how if someone at Cambridge
ever felt to overwhelmed with the workload, or anything, there are so many people
they could go to for help, which is very reassuring.

We then had a lecture about how maths matters from Dr Robert Hunt, a Fellow
and Director of Studies in Mathematics in Christ’s college. He spoke to us about
Paul Dirac, a mathematician who loved maths because of how beautiful certain
things in maths can be. 



Paul Dirac formed an equation for the electron, but it was an extremely
difficult equation, with things like complex numbers and 4-dimensional
vectors in it, so, using the power of mathematical notations, he managed to
simplify it into a very small, beautiful equation, that still had the same
complexity and accuracy of the first. When he published it, there were many
values for which it worked, however, there were also some values for which if it
were true, then the value for energy would have to be negative. When people
tried to tell Dirac that negative energy could not be real, and that his equation
was wrong, he refused to believe it. When asked why, he simply said that it was
too beautiful to be wrong. Later, in August 1932, using Dirac’s equation, Carl
David Anderson discovered the positron, proving Dirac’s equation as correct.
It was amazing how maths can be used as a basis to discover extraordinary
things that at first seem impossible.

Saturday was our last day, so we had to give in our key cards and get all of our
bags. We had one final lecture about prime numbers from Dr Henry Bradford,
Fellow and Director of studies in Mathematics at Christ’s college, who talked to
us about how they are used in encryption, and showed us three different
methods on how to prove that there are infinite primes.

Overall, I believe this experience at Christ’s has been very beneficial, as it
really opened my eyes as to what university life at Cambridge really was like. I
used to believe that getting into such competitive universities like Oxford and
Cambridge was not something I was capable of, but after experiencing this
residential, and getting the tips from admissions staff on how to make your
application stand out, it is starting to seem more like something that is
possible for me.



WHAT IS THE FOURIER SERIES?

 The Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of 
sines and cosines. It was introduced by a French mathematician named Joseph Fourier, who 
was trying to study the flow of heat in a metal plate and decided to express the heat source 
as an infinite series of sine and cosine functions. This is because the temperature 
distribution can be described using several sine and cosine waves. 

In Maths, you learn about the trigonometric functions sine and cosine and how they form 
waves on a graph. One of the key features of these waves is that they are periodic waves. A 
periodic wave is a wave that repeats after a certain length of time and for sine and cosine 
waves, they repeat every 360 ° / 2π. If you take any position on the sine or cosine graph and 
move it over by 2π, you will get the exact same height. This can be expressed as a period 
function with “T” as the period of the wave. 

There are other types of periodic waves such as 
square waves, which also has a period of 2π. It 
can be approximated using sin(x) as the peaks 
and troughs roughly align with the square wave 
at 1 and -1. To obtain a better approximation 
you need to add sine waves with a faster 
oscillation, but smaller amplitude. It will look 
something like the following picture. 

THE FOURIER SERIES EQUATION: 

f(x) – the function being transformed

a0, an and bn – Fourier coefficients 
and represents the amplitude 
n – indexes the harmonics 

Glenda P
FOURIER SERIES



Unnecessary information can be removed by the Fourier series allowing 
signals to be compressed. Along with the Fourier series for periodic 
signals, there is also the Fourier transform, which applies to non-periodic 
signals. They work together for image compression, removing high-
frequency components the human eye cannot detect. A well-known 
example would be the JPEG image format. 

APPLICATIONS OF THE FOURIER SERIES: 
The Fourier series can be applied to a wide range of mathematical and physical
problems. 
Some examples of this include: 

1) Selective filtering 
With the help of the Fourier series filters can be designed to filter specific 
frequencies. This is particularly useful in filtering applications such as the 
radio where you would want to remove unwanted frequency components 
from a signal, whilst maintaining the desired frequency. 

2) Speech recognition 

Speech patterns can be processed and recognised with the Fourier series 
since the frequency of the sound can be detected. 

3) Compression of Signals 

4) Noise Filtering 
In addition to selective filtering, the Fourier series can enable noise 
filtering. It can completely remove any unwanted noise from an audio 
signal. A great example of where this applies is noise-cancelling 
headphones. 

Overall, the application of the Fourier series has limitless applications and is an essential 
concept in engineering and mathematics when working with waves. 

Glenda P



Math and Music
The Harmonious Relationship Between Numbers and Notes
The connection between mathematics and music is profound and multifaceted, revealing the deep structural
similarities between these two seemingly disparate fields. Both disciplines are governed by patterns, structures,
and relationships that are as beautiful as they are complex. Understanding the mathematical foundations of
music not only enhances our appreciation of musical compositions but also demonstrates the universality of
mathematical principles.

Mathematical Foundations of Musical Scales
At the heart of musical theory is the concept of scales, which are sequences of notes arranged in ascending or
descending order. The most common scale in Western music is the diatonic scale, which consists of seven notes.
The frequencies of these notes are related by specific ratios. For example, the octave, which is the interval
between one musical pitch and another with double its frequency, can be expressed as a 2:1 ratio. Similarly, other
intervals like fifths (3:2) and fourths (4:3) have precise mathematical relationships. These ratios form the basis of
harmony and consonance in music.

Rhythm and Time Signatures
Rhythm in music is inherently mathematical, involving the division of time into equal parts. Time signatures, such
as 4/4 or 3/4, dictate how many beats are in each measure and what note value constitutes one beat. This division
and subdivision of time can be described using fractions and sequences, providing a clear link between rhythmic
patterns and mathematical concepts. Polyrhythms, where multiple rhythmic patterns are played simultaneously,
showcase more complex mathematical relationships, creating intricate and captivating musical textures.

Harmony and Chord Progressions
Harmony, the simultaneous combination of notes to produce chords, is deeply rooted in mathematical principles.
Chords are built from scales using specific intervals, and their progression follows patterns that can be analyzed
mathematically. The Circle of Fifths, a visual representation of the relationships among the twelve tones of the
chromatic scale, illustrates how chords are related and helps musicians understand key signatures and
modulations. This cyclical pattern is a clear example of how mathematical structures underpin musical harmony.

Fourier Transform and Sound Analysis
The Fourier Transform, a mathematical technique that decomposes functions into their constituent frequencies,
has significant applications in music. It allows us to analyze complex sounds by breaking them down into simpler
sinusoidal components. This analysis is essential for understanding timbre, the quality of a musical note that
distinguishes different instruments. By applying Fourier analysis, we can visualize and manipulate the frequency
spectrum of sounds, leading to advancements in audio technology and music production.

Algorithmic Composition and Artificial Intelligence
In recent years, the intersection of mathematics and music has expanded into the realm of algorithmic
composition and artificial intelligence. Composers and researchers use algorithms to generate music, employing
mathematical models to create melodies, harmonies, and rhythms. AI systems can analyze existing musical
pieces, learn their patterns, and produce original compositions, showcasing the creative potential of combining
mathematics with music theory. Furthermore, AI can also give musicians ideas and inspiration for their next music
album or sonng.

The relationship between mathematics and music is a testament to the universal language of patterns and
structures. From the precise ratios that define musical scales to the complex algorithms that compose new music,
mathematics provides a foundation for understanding and creating music. This harmonious relationship not only
enriches our appreciation of both fields but also highlights the beauty of their unification. Whether you are a
mathematician fascinated by music or a musician intrigued by numbers, exploring this relationship offers endless
opportunities for discovery and creativity.

Tosin A



Simpson’s Paradox Joana T

We are used to deciding one single type of correlation in a dataset, but what if there
were multiple? Simpson’s Paradox is a phenomenon where an association between two
variables in a population emerges, disappears or reverses when the population is
divided into subpopulations.

It can happen quite often and is very easy to miss when analysing data and drawing
conclusions. If it goes unnoticed, the conclusions drawn can be misleading and
potentially incorrect. One possible reason for the paradox is a 3rd confounding*
variable. What this means is that the presence of a 3rd variable is affecting the
relationship between the 2 variables we are testing.  Because the influence of the 3rd
variable is not taken into account, Simpson’s paradox therefore occurs. 

The graphs above are a visualisation of Simpson’s paradox. On the left, we can see
the overall correlation (negative), however when the data is split into subgroups or
strata, the correlation reverses. It becomes positive.

One of the most famous situations in which this paradox is found, is university/college admissions. At
UC Berkeley, 44% of the men which applied, were admitted, and 35% of the women which applied were
admitted. We would be immediately inclined to think there is a preference towards men. However,
when we look at each department, we find that women tended to apply to courses with harsher
admission rates than men. Here is a table of the largest 6 departments at UC Berkeley.

We can see that on average, women were accepted at a
roughly equal or higher rate than men but due to this 3rd
confounding factor (concentration of women and men
respective to difficulty of course), it creates this interesting
effect of Simpson’s paradox.

*confounding = an unmeasured variable that influences both the supposed cause and effect.



On the 25th June, Newstead hosted an inter-school maths competition, with
32 students from both Newstead, and St Olaves. Each team consisted of two
Newstead students, and two Olaves students. After the initial warm up,
there was a group round, where the team was allowed to work together to
solve questions. The second round had a series of questions, each worth five
marks, where the team with the closest answer won the points. In the third
round, the teams split in half, with a Newstead student and an Olaves
student on each side, where one side’s answer would be given to the other
side, to use as part of their solution. Twelve points were up for grabs, with
three extra points available if questions were done fast enough. The fourth
round was exactly like the second, and was followed by a cross number
round, where again, the teams divided into two and both sides of the team
would give each other clues with their answers. To wrap it up, the sixth
round was formatted like the second and fourth rounds, and points were
added up to determine the team with the highest amount of points overall.

-winning team, sophia w



You have four squares that you can place on a large, flat table. You can place
the squares so that their edges align, but their interiors cannot overlap.

Your goal is to position the squares so that you can trace as many rectangles as
possible using the edges of the squares. For example, if you had two squares

instead of four, you could place the squares side by side, as shown below:

With this arrangement, it’s
possible to trace three rectangles:
the square on the left, the square
on the right and the larger
rectangle around both squares.
How would you arrange four
squares to get as many rectangles
as possible? And what is this
number of rectangles?

There’s a version of solitaire played in southern Italy with a deck of 40
Neapolitan cards, with four suits numbered from 1 to 10. The deck is shuffled
and then cards are turned over one at a time. Flipping over the first card you
say “one,” the second card “two” and the third card “three.” You repeat this,
saying “one” for the fourth card, “two” for the fifth card and “three” for the

sixth card. You continue your way through the deck, until you at last say “one”
for the 40th card.

If at any point the number you say matches the value of the
card you flip over, you lose.

What is your probability of winning the game?
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